32 research outputs found

    An Assessment of Deep Learning Models and Word Embeddings for Toxicity Detection within Online Textual Comments

    Get PDF
    Today, increasing numbers of people are interacting online and a lot of textual comments are being produced due to the explosion of online communication. However, a paramount inconvenience within online environments is that comments that are shared within digital platforms can hide hazards, such as fake news, insults, harassment, and, more in general, comments that may hurt someone’s feelings. In this scenario, the detection of this kind of toxicity has an important role to moderate online communication. Deep learning technologies have recently delivered impressive performance within Natural Language Processing applications encompassing Sentiment Analysis and emotion detection across numerous datasets. Such models do not need any pre-defined hand-picked features, but they learn sophisticated features from the input datasets by themselves. In such a domain, word embeddings have been widely used as a way of representing words in Sentiment Analysis tasks, proving to be very effective. Therefore, in this paper, we investigated the use of deep learning and word embeddings to detect six different types of toxicity within online comments. In doing so, the most suitable deep learning layers and state-of-the-art word embeddings for identifying toxicity are evaluated. The results suggest that Long-Short Term Memory layers in combination with mimicked word embeddings are a good choice for this task

    An assessment of deep learning models and word embeddings for toxicity detection within online textual comments

    Get PDF
    Today, increasing numbers of people are interacting online and a lot of textual comments are being produced due to the explosion of online communication. However, a paramount inconvenience within online environments is that comments that are shared within digital platforms can hide hazards, such as fake news, insults, harassment, and, more in general, comments that may hurt someone’s feelings. In this scenario, the detection of this kind of toxicity has an important role to moderate online communication. Deep learning technologies have recently delivered impressive performance within Natural Language Processing applications encompassing Sentiment Analysis and emotion detection across numerous datasets. Such models do not need any pre-defined hand-picked features, but they learn sophisticated features from the input datasets by themselves. In such a domain, word embeddings have been widely used as a way of representing words in Sentiment Analysis tasks, proving to be very effective. Therefore, in this paper, we investigated the use of deep learning and word embeddings to detect six different types of toxicity within online comments. In doing so, the most suitable deep learning layers and state-of-the-art word embeddings for identifying toxicity are evaluated. The results suggest that Long-Short Term Memory layers in combination with mimicked word embeddings are a good choice for this task

    Designing Intelligent Systems for Online Education: Open Challenges and Future Directions

    Get PDF
    The design and delivering of platforms for online education is fostering increasingly intense research. Scaling up education online brings new emerging needs related with hardly manageable classes, overwhelming content alternatives, and academic dishonesty while interacting remotely, as examples. However, with the impressive progress of the data mining and machine learning fields, combined with the large amounts of learning-related data and high-performance computing, it has been possible to gain a deeper understanding of the nature of learning and teaching online. Methods at the analytical and algorithmic levels are constantly being developed and hybrid approaches are receiving an increasing attention. Recent methods are analyzing not only the online traces left by students a posteriori, but also the extent to which this data can be turned into actionable insights and models, to support the above needs in a computationally efficient, adaptive and timely way. In this paper, we present relevant open challenges lying at the intersection between the machine learning and educational communities, that need to be addressed to further develop the field of intelligent systems for online education. Several areas of research in this field are identified, such as data availability and sharing, time-wise and multi-modal data modelling, generalizability, fairness, explainability, interpretability, privacy, and ethics behind models delivered for supporting education. Practical challenges and recommendations for possible research directions are provided for each of them, paving the way for future advances in this field

    Modelling Archival Hierarchies in Practice: Key Aspects and Lessons Learned

    Get PDF
    An increasing number of archival institutions aim to provide public access to historical documents. Ontologies have been designed, developed and utilised to model the archival description of historical documents and to enable interoperability between different information sources. However, due to the heterogeneous nature of archives and archival systems, current ontologies for the representation of archival content do not always cover all existing structural organisation forms equallywell. After briefly contextualising the heterogeneity in the hierarchical structure of German archives, this paper describes and evaluates differences between two archival ontologies, ArDO and RiC-O, and their approaches to modelling hierarchy levels and archive dynamics

    Generating knowledge graphs by employing Natural Language Processing and Machine Learning techniques within the scholarly domain

    Get PDF
    The continuous growth of scientific literature brings innovations and, at the same time, raises new challenges. One of them is related to the fact that its analysis has become difficult due to the high volume of published papers for which manual effort for annotations and management is required. Novel technological infrastructures are needed to help researchers, research policy makers, and companies to time-efficiently browse, analyse, and forecast scientific research. Knowledge graphs i.e., large networks of entities and relationships, have proved to be effective solution in this space. Scientific knowledge graphs focus on the scholarly domain and typically contain metadata describing research publications such as authors, venues, organizations, research topics, and citations. However, the current generation of knowledge graphs lacks of an explicit representation of the knowledge presented in the research papers. As such, in this paper, we present a new architecture that takes advantage of Natural Language Processing and Machine Learning methods for extracting entities and relationships from research publications and integrates them in a large-scale knowledge graph. Within this research work, we i) tackle the challenge of knowledge extraction by employing several state-of-the-art Natural Language Processing and Text Mining tools, ii) describe an approach for integrating entities and relationships generated by these tools, iii) show the advantage of such an hybrid system over alternative approaches, and vi) as a chosen use case, we generated a scientific knowledge graph including 109,105 triples, extracted from 26,827 abstracts of papers within the Semantic Web domain. As our approach is general and can be applied to any domain, we expect that it can facilitate the management, analysis, dissemination, and processing of scientific knowledge

    Knowledge graph enabled curation and exploration of Nuremberg’s city heritage

    Get PDF
    An important part in European cultural identity relies on European cities and in particular on their histories and cultural heritage. Nuremberg, the home of important artists such as Albrecht Dürer and Hans Sachs developed into the epitome of German and European culture already during the Middle Ages. Throughout history, the city experienced a number of transformations, especially with its almost complete destruction during World War 2. This position paper presents TRANSRAZ, a project with the goal to recreate Nuremberg by means of an interactive 3D tool to explore the city’s architecture and culture ranging from the 17th to the 21st century. The goal of this position paper is to discuss the ongoing work of connecting heterogeneous historical data from various sources previously hidden in archives to the 3D model using knowledge graphs for a scientifically accurate interactive exploration on the Web

    DDB-EDM to FaBiO: The Case of the German Digital Library

    Get PDF
    Cultural heritage portals have the goal of providing users with seamless access to all their resources. This paper introduces initial efforts for a user-oriented restructuring of the German Digital Library (DDB). At present, cultural heritage objects (CHOs) in the DDB are modeled using an extended version of the Europeana Data Model (DDBEDM), which negatively impacts usability and exploration. These challenges can be addressed by leveraging ontologies, and building a knowledge graph from the DDB's voluminous collection. Towards this goal, an alignment of bibliographic metadata from DDB-EDM to FRBR-Aligned Bibliographic Ontology (FaBiO) is presented

    The challenges of German archival document categorization on insufficient labeled data

    Get PDF
    Document exploration in archives is often challenging due to the lack of organization in topic-based categories. Moreover, archival records only provide short text which is often insufficient for capturing the semantic. This paper proposes and explores a dataless categorization approach that utilizes word embeddings and TF-IDF to categorize archival documents. Additionally, it introduces a visual approach built on top of the word embeddings to enhance the exploration of data. Preliminary results suggest that current vector representations alone do not provide enough external knowledge to solve this task
    corecore